Iterative deblending using MultiResUNet with multilevel blending noise for training and transfer learning

Author:

Wang Benfeng1ORCID,Li Jiakuo2ORCID,Han Dong2

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China. (corresponding author)

2. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China.

Abstract

Blended seismic acquisition has improved the efficiency of land and marine data acquisition significantly. Nevertheless, the consequent blending noise poses challenges for subsequent seismic imaging and inversion. Therefore, deblending algorithms are being widely investigated. To improve the deblending performance and efficiency of traditional deblending algorithms, a new method is proposed that we call multiresolution ResUNet (MultiResUNet) trained on data sets with multilevel blending noise. The trained MultiResUNet is optimal for iterative deblending. MultiResUNet combines the advantages of a residual learning network (ResNet) and U-net. We apply a scalar factor to the synthetic blending noise to construct a training data set with multilevel blending noise contamination, which is designed to train and fine-tune MultiResUNet to detect weak blending noise and effectively retrieve signals in an iterative manner. The proposed method attenuates the blending noise iteratively, leading to an improved performance compared with the conventional curvelet transform-based thresholding algorithm or MultiResUNet trained on data sets with single-level blending noise. Because the training and fine tuning of MultiResUNet happens only once up front, the application of the trained MultiResUNet is efficient. To demonstrate the performance of the proposed method, the improved deblending accuracy is verified through comparison on numerical examples. For field data applications, a transfer learning approach is adopted to generalize the MultiResUNet trained on synthetic blended data for accurate deblending.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3