Joint deblending and data reconstruction with focal transformation

Author:

Cao Junhai1ORCID,Verschuur Eric2,Gu Hanming3,Li Lie4

Affiliation:

1. China University of Geosciences, Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, Wuhan, China and Delft University of Technology, Department of Imaging Physics, Faculty of Applied Sciences, Delft, The Netherlands..

2. Delft University of Technology, Department of Imaging Physics, Faculty of Applied Sciences, Delft, The Netherlands..

3. China University of Geosciences, Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, Wuhan, China.(corresponding author).

4. Zhanjiang Branch of CNOOC Limited, Zhanjiang, China..

Abstract

Blended or simultaneous source shooting is becoming more widely used in seismic exploration and monitoring, which can provide significant uplift in terms of acquisition quality and economic efficiency. Effective deblending techniques are essential to make use of existing processing and imaging methodologies. When dealing with coarse and/or irregularly sampled blended data, the aliasing noise of incomplete data will affect the deblending process and the crosstalk in the blended data will also have a negative influence on the process of data reconstruction. Thus, we have developed a joint deblending and data-reconstruction method using the double-focal transformation to eliminate blending noise and aliasing noise in the coarse, blended data. Numerically blended synthetic and field-data examples demonstrate the validity of its application for deblending and data reconstruction. We also investigate the effect of random noise on the recovery process, and it shows that the algorithm would obtain optimum results after applying a denoising process before deblending and data reconstruction.

Funder

China National Major Science and Technology Projects

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3