Unsupervised seismic random noise attenuation by a recursive deep image prior

Author:

Zhang Yun1ORCID,Wang Benfeng2ORCID

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China.

2. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China. (corresponding author)

Abstract

The presence of random noise in field data significantly reduces the precision of subsequent seismic processing steps. As a result, random noise suppression is essential to improve the quality of field data. Because most traditional algorithms characterize seismic data linearly, the denoising accuracy is still open to be improved. As an unsupervised deep-learning method, the deep image prior (DIP) algorithm can characterize seismic data nonlinearly. The DIP uses randomly generated noise as input and noisy seismic data as desired output for random noise attenuation over several rounds of training epochs. However, determining the optimal training epoch for obtaining the final denoised result of unlabeled noisy data remains a challenge. To terminate the DIP training in time and obtain the denoised result, we design an improved quality control criterion (IQCC) based on adjacent estimations of seismic signal. To further improve the denoising accuracy, a recursive strategy is developed that uses the previous desired output as the new input and the previous denoised result as the new desired output. To obtain the optimal denoised results using the suggested recursive algorithm, a convergence condition also is established. Numerous examples of synthetic prestack and poststack data demonstrate the effectiveness of the designed IQCC and our recursive strategy with a convergence condition in protecting the effective signal, especially when compared with the curvelet thresholding algorithm and the original DIP. Furthermore, the denoising accuracy is on par with that of the supervised learning algorithm, demonstrating the adaptability of our recursive DIP under the convergence condition. Its superiority is further supported by field poststack seismic data processing, which uses the local similarity for performance assessments.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference58 articles.

1. Lateral prediction for noise attenuation by t-x and f-x techniques

2. Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation

3. Batson, J., and L. Royer, 2019, Noise2Self: Blind denoising by self-supervision: Proceedings of the 36th International Conference on Machine Learning, 524–533.

4. Improved Noise2Noise Denoising with Limited Data

5. Random noise reduction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3