Wavefield-separation methods for dual-sensor towed-streamer data

Author:

Day Anthony1,Klüver Tilman1,Söllner Walter1,Tabti Hocine1,Carlson David2

Affiliation:

1. Petroleum Geo-Services, Lysaker, Norway..

2. Petroleum Geo-Services, Houston, Texas, USA..

Abstract

A dual-sensor towed streamer records the pressure and vertical component of particle motion associated with the incident wavefield that may be used to separate the wavefield into its up- and downgoing parts. This procedure requires information about the water properties (wave-propagation velocity and density) and is robust in the presence of errors in the estimation of these quantities of the magnitude likely to be encountered. In practice, the particle motion data recorded by current towed marine streamers encounter very strong mechanical noise such that, for the lowest frequencies, the wavefield separation must be approximated by deconvolving the ghost function from the pressure data. This procedure requires information about the streamer depth and is robust to small depth errors over the frequency range for which it is required for dual-sensor streamer processing, but it is much more sensitive if applied over the bandwidth necessary to deghost pressure data acquired at a conventional streamer depth. The signal-to-noise ratio can be further enhanced by recombining the up- and downgoing pressure fields at the sea surface, which has the effect of applying a ghostlike filter to noise that is recorded by only one of the two sensors. In practical marine acquisition scenarios, spatial sampling is often insufficient to yield an accurate result, especially in the crossline direction. If each streamer is processed independently assuming that the wavefield propagation is purely inline, significant errors can be introduced. For arrivals with high emergent angles, errors may also be introduced even if the wavefield propagation actually is purely inline due to incorrect treatment of spatially aliased energy. However, these effects are almost entirely confined to very shallow events. They can be mitigated by using independently derived information about the crossline propagation angle and, for data comprising predominantly forward scattered energy, appropriate application of linear moveout.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3