Quantitative conductivity and permittivity estimation using full-waveform inversion of on-ground GPR data

Author:

Busch Sebastian1,van der Kruk Jan1,Bikowski Jutta1,Vereecken Harry1

Affiliation:

1. Institute of Bio and Geosciences, Forschungszentrum Jülich, Agrosphere (IBG-3), Jülich, Germany..

Abstract

Conventional ray-based techniques for analyzing common-midpoint (CMP) ground-penetrating radar (GPR) data use part of the measured data and simplified approximations of the reality to return qualitative results with limited spatial resolution. Whereas these methods can give reliable values for the permittivity of the subsurface by employing only the phase information, the far-field approximations used to estimate the conductivity of the ground are not valid for near-surface on-ground GPR, such that the estimated conductivity values are not representative for the area of investigation. Full-waveform inversion overcomes these limitations by using an accurate forward modeling and inverts significant parts of the measured data to return reliable quantitative estimates of permittivity and conductivity. Here, we developed a full-waveform inversion scheme that uses a 3D frequency-domain solution of Maxwell’s equations for a horizontally layered subsurface. Although a straightforward full-waveform inversion is relatively independent of the permittivity starting model, inaccuracies in the conductivity starting model result in erroneous effective wavelet amplitudes and therefore in erroneous inversion results, because the conductivity and wavelet amplitudes are coupled. Therefore, the permittivity and conductivity are updated together with the phase and the amplitude of the source wavelet with a gradient-free optimization approach. This novel full-waveform inversion is applied to synthetic and measured CMP data. In the case of synthetic single layered and waveguide data, where the starting model differs significantly from the true model parameter, we were able to reconstruct the obtained model properties and the effective source wavelet. For measured waveguide data, different starting values returned the same wavelet and quantitative permittivities and conductivities. This novel approach enables the quantitative estimation of permittivity and conductivity for the same sensing volume and enables an improved characterization for a wide range of applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3