An efficient frequency-domain full waveform inversion method using simultaneous encoded sources

Author:

Ben-Hadj-Ali Hafedh123,Operto Stéphane123,Virieux Jean123

Affiliation:

1. Géoazur, CNRS, Université de Nice Sophia-Antipolis, Valbonne, France; presently Total-CSTJF, Pau, France..

2. Géoazur, CNRS, Université de Nice Sophia-Antipolis,Villefranche-sur-mer, France..

3. Institut des Sciences de la Terre (ISTerre), CNRS, Université Joseph Fourier, Grenoble, France..

Abstract

Three-dimensional full waveform inversion (FWI) still suffers from prohibitively high computational costs that arise because of the seismic modeling for multiple sources that is performed at each nonlinear iteration of FWI. Building supershots by assembling several sources allows mitigation of the number of simulations per FWI iteration, although it adds crosstalk artifacts because of interference between the individual sources of the supershots. These artifacts themselves can be reduced by encoding each individual source with a random phase shift during assembling of the sources. The source encoding method is applied to an efficient frequency-domain FWI, in which a limited number of discrete frequencies or coarsely sampled frequency groups are inverted successively following a multiscale approach. Random codes can be regenerated at each FWI iteration or for each frequency of a group during each FWI iteration, to favor the destructive summation of crosstalk artifacts over FWI iterations. Either a limited number of sources (partial assembling) or the total number of sources (full assembling) can be combined into supershots. Wide-aperture acquisition geometries such as land or marine node acquisitions are considered, to allow one to stack a large number of shots in the full computational domain and to test different partial assembling strategies involving sources that are close to or distant from each other. Two-dimensional case studies show that partial-source assembling of distant shots has a limited sensitivity to noise, for a computational saving that is roughly proportional to the number of shots assembled into the supershots. On the other hand, full assembling is more sensitive to noise, and it requires successive inversions of finely sampled frequency groups with a large number of FWI iterations. In contrast, refining the shot interval to improve the fold degrades the models when full assembling is applied to noisy data. Preliminary 3D application of the method leads to the same conclusions that 2D case studies do, with regard to the footprint of crosstalk noise in the imaging.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3