A new iterative solver for the time-harmonic wave equation

Author:

Riyanti C. D.12,Erlangga Y. A.12,Plessix R.-E.12,Mulder W. A.12,Vuik C.12,Oosterlee C.12

Affiliation:

1. Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft, The Netherlands. E-mail: c.d.riyanti@ewi.tudelft.nl; yogiae@gmail.com; c.vuik@tudelft.nl.

2. Shell International Exploration and Production, P.O. Box 60, 2280 AB Rijswijk, The Netherlands. E-mail: reneedouard.plessix@shell.com; wim.mulder@shell.com.

Abstract

The time-harmonic wave equation, also known as the Helmholtz equation, is obtained if the constant-density acoustic wave equation is transformed from the time domain to the frequency domain. Its discretization results in a large, sparse, linear system of equations. In two dimensions, this system can be solved efficiently by a direct method. In three dimensions, direct methods cannot be used for problems of practical sizes because the computational time and the amount of memory required become too large. Iterative methods are an alternative. These methods are often based on a conjugate gradient iterative scheme with a preconditioner that accelerates its convergence. The iterative solution of the time-harmonic wave equation has long been a notoriously difficult problem in numerical analysis. Recently, a new preconditioner based on a strongly damped wave equation has heralded a breakthrough. The solution of the linear system associated with the preconditioner is approximated by another iterative method, the multigrid method. The multigrid method fails for the original wave equation but performs well on the damped version. The performance of the new iterative solver is investigated on a number of 2D test problems. The results suggest that the number of required iterations increases linearly with frequency, even for a strongly heterogeneous model where earlier iterative schemes fail to converge. Complexity analysis shows that the new iterative solver is still slower than a time-domain solver to generate a full time series. We compare the time-domain numeric results obtained using the new iterative solver with those using the direct solver and conclude that they agree very well quantitatively. The new iterative solver can be applied straightforwardly to 3D problems.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3