A finite-difference iterative solver of the Helmholtz equation for frequency-domain seismic wave modeling and full-waveform inversion

Author:

Huang Xingguo1ORCID,Greenhalgh Stewart2

Affiliation:

1. Jilin University, College of Instrumentation and Electrical Engineering, and Key Lab of Geo-Exploration Instrumentation (Ministry of Education), Changchun 130026, China.(corresponding author).

2. Swiss Federal Institute of Technology (ETH) Zurich, Institute of Geophysics, Department of Earth Sciences, 8092 Zurich, Switzerland..

Abstract

We have developed a finite-difference iterative solver of the Helmholtz equation for seismic modeling and inversion in the frequency domain. The iterative solver involves the shifted Laplacian operator and two-level preconditioners. It is based on the application of the preconditioners to the Krylov subspace stabilized biconjugate gradient method. A critical factor for the iterative solver is the introduction of a new preconditioner into the Krylov subspace iteration method to solve the linear equation system resulting from the discretization of the Helmholtz equation. This new preconditioner is based on a reformulation of an integral equation-based convergent Born series for the Lippmann-Schwinger equation to an equivalent differential equation. We have determined that our iterative solver combined with the novel preconditioner when incorporated with the finite-difference method accelerates the convergence of the Krylov subspace iteration method for frequency-domain seismic wave modeling. A comparison of a direct solver, a one-level Krylov subspace iterative solver, and our two-level iterative solver verified the accuracy and accelerated convergence of the new scheme. Extensive tests in full-waveform inversion demonstrate the solver’s applicability to such problems.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3