3D seismic geometry quality control and corrections by applying machine learning

Author:

Jiang Wenbin1ORCID,Zhang Jie1ORCID,Bell Lee2

Affiliation:

1. University of Science and Technology of China, School of Earth and Space Sciences, Geophysical Research Institute, Hefei, China.(corresponding author).

2. HSB Geophysical, 1324 Neeley, Houston, Texas, USA..

Abstract

Seismic geometry quality control (QC) and corrections are crucial but labor-intensive steps in seismic data preprocessing. Current methods to estimate the correct positions of sources and receivers are usually based on the first-break traveltimes, which may contain large errors, thereby affecting the accuracy of the results. We have applied a deep convolutional neural network to identify shots and receivers that have position error, and we searched for the correct position. Once an error in position is identified by scanning data, a grid search for the correct location is conducted and the result is evaluated by the system until an optimal position is found. The network is trained on 3200 training sets from real data that have been corrected by the traditional method. Through cross validation on 800 sets, the classifier achieves a precision of 99.5% and a recall rate of 1. The final errors between the true positions and corrected positions are less than 10% of the shot spacing. An uncorrected real data experiment reveals that the proposed machine-learning method for geometry QC and correction provides similar results to the conventional manual correction approach but without human interference. Because the wavefield pattern of the training data for this purpose is global, there is no need to train the system again when applying the method to correct receiver position or process another data set. This claim is verified with different real data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3