Evaluation and Development of a Predictive Model for Geophysical Well Log Data Analysis and Reservoir Characterization: Machine Learning Applications to Lithology Prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s11053-022-10121-z.pdf
Reference80 articles.
1. Abzalov, M. (2016). Exploratory data analysis. Modern Approaches in Solid Earth Sciences, 12, 207–219.
2. Ahmadi, M. A., & Chen, Z. (2019). Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs. Petroleum, 5(3), 271–284.
3. Al-Mudhafar, W. J., & Bondarenko, M. A. (2015). Integrating K-means clustering analysis and generalized additive model for efficient reservoir characterization. In 77th EAGE Conference and Exhibition 2015: Earth Science for Energy and Environment, June, 2301–2306. https://doi.org/10.3997/2214-4609.201413024.
4. Al-Mudhafar, W. J. (2017a). Integrating kernel support vector machines for efficient rock facies classification in the main pay of Zubair formation in South Rumaila oil field, Iraq. Modeling Earth Systems and Environment, 3(1), 1–8.
5. Al-Mudhafar, W. J. (2017b). Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms. Journal of Petroleum Exploration and Production Technology, 7(4), 1023–1033.
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing PVT property predictions for black oil reservoirs through the application of supervised machine learning techniques;Geoenergy Science and Engineering;2024-12
2. Innovative lithology identification enhancement via the recurrent transformer model with well logging data;Geoenergy Science and Engineering;2024-09
3. Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging;Natural Resources Research;2024-08-19
4. Logging Lithology Discrimination with Enhanced Sampling Methods for Imbalance Sample Conditions;Applied Sciences;2024-07-26
5. Enhancing fluid identification via an innovative transformer model with bidirectional recurrent units network leveraging well logging data;Physics of Fluids;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3