Regularized elastic full-waveform inversion using deep learning

Author:

Zhang Zhen-Dong1ORCID,Alkhalifah Tariq1ORCID

Affiliation:

1. King Abdullah University of Science and Technology, Department of Physical Science and Engineering, Thuwal 23955-6900, Saudi Arabia.(corresponding author); .

Abstract

Obtaining high-resolution models of the earth, especially around the reservoir, is crucial to properly image and interpret the subsurface. We have developed a regularized elastic full-waveform inversion (FWI) method that uses facies as the prior information. Deep neural networks (DNNs) are trained to estimate the distribution of facies in the subsurface. Here, we use facies extracted from wells as the prior information. Seismic data, well logs, and interpreted facies have different resolution and illumination to the subsurface. Besides, a physical process, such as anelasticity in the subsurface, is often too complicated to be fully considered. Therefore, there are often no explicit formulas to connect the data coming from different geophysical surveys. A deep-learning method can find the statistically correct connection without the need to know the complex physics. In our deep-learning scheme, we specifically use it to assist the inverse problem instead of the widely used labeling task. First, we conduct an adaptive data-selection elastic FWI using the observed seismic data and obtain estimates of the subsurface, which do not need to be perfect. Then, we use the extracted facies information from the wells and force the estimated model to fit the facies by training DNNs. In this way, a list of facies is mapped to a 2D or 3D inverted model guided mainly by the structure features of the model. The multidimensional distribution of facies is used either as a regularization term or as an initial model for the next waveform inversion. Our method has two main features: (1) It applies to any kind of distribution of data samples and (2) it interpolates facies between wells guided by the structure of the estimated models. Results with synthetic and field data illustrate the benefits and limitations of this method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference40 articles.

1. Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, 2016, Tensorflow: A system for large-scale machine learning: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, 265–283.

2. A recipe for practical full-waveform inversion in anisotropic media: An analytical parameter resolution study

3. Full model wavenumber inversion: Identifying sources of information for the elusive middle model wavenumbers

4. Subsurface Structure Analysis Using Computational Interpretation and Learning: A Visual Signal Processing Perspective

5. Automated fault detection without seismic processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3