Deep-learning viscoelastic seismic inversion for mapping subsea permafrost

Author:

Bustamante Jefferson1ORCID,Fabien-Ouellet Gabriel2ORCID,Duchesne Mathieu J.3ORCID,Ibrahim Amr4ORCID

Affiliation:

1. Polytechnique Montreal, Departement des Genies Civil, Geologique et des Mines, Montreal, Canada and Geological Survey of Canada, Natural Resources Canada, Quebec, Canada. (corresponding author)

2. Polytechnique Montreal, Departement des Genies Civil, Geologique et des Mines, Montreal, Canada.

3. Geological Survey of Canada, Natural Resources Canada, Quebec, Canada.

4. Polytechnique Montreal, Departement des Genies Civil, Geologique et des Mines, Montreal, Canada and Beni-Suef University, Physics Department, Faculty of Science, Beni Suef, Egypt.

Abstract

Marine seismic surveys can be used to map ice-bearing subsea permafrost on a large scale. However, current seismic processing technologies have limited capacity to image permafrost distribution at depth, mainly due to the low sensitivity of primary reflections and refractions to the velocity inversion found at the base of permafrost. Guided waves and multiples are more sensitive to the velocity variations below the top of permafrost, but they remain challenging to use in physics-based inversion approaches. A deep-learning-based seismic inversion has the potential to improve seismic imaging below the top of permafrost by automatically extracting information from all wave modes. We develop a multi-input neural network (NN) to estimate seismic velocities from marine seismic data. The network is trained on synthetic data generated from the representative distributions of the seismic properties of subsea permafrost. We find that our network can image large velocity contrasts and reversals in depth, typical of subsea permafrost. We use our network to estimate the P- and S-wave velocity and Q-factor models from a seismic line in the Beaufort Sea. The NN indicates highly discontinuous subsea permafrost with variable thickness in the area. Our work shows that deep-learning-based seismic inversion could become a cost-effective technology to map the distribution of subsea permafrost on a large scale and, more generally, high-velocity geologic layers located in shallow waters.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3