Affiliation:
1. Key Laboratory of Deep Petroleum Intelligent Exploration and Development Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
2. Earth Science and Engineering Program King Abdullah University of Science and Technology Thuwal Saudi Arabia
Abstract
AbstractNowadays, the most successful applications of full‐waveform inversion (FWI) involve marine seismic data under acoustic approximations. Elastic FWI of land seismic data is still challenging in theory and practice. Here, we propose a full dispersion spectrum inversion method and apply it to seismic data acquired in West Antarctica. Inspired by the conventional surface wave dispersion curve inversion method, we propose to invert the surface wave dispersion spectrum instead of the complicated waveforms. We compare the frequency‐velocity, frequency‐slowness, and frequency‐wavenumber spectra in terms of their ability to resolve dispersion modes and the feasibility of their adjoint updates and conclude that the frequency‐slowness spectrum is the best for our inversion objectives. We test four objective functions, subtraction, zero‐lag crosscorrelation, optimal transport, and the local‐crosscorrelation to quantify the spectrum mismatch and provide the corresponding adjoint source. We then theoretically analyze the convexity of the proposed objective functions and examine their convergence behavior using numerical examples. We also compare the proposed method with the classic FWI method and the traditional surface wave dispersion curve inversion method and discuss the strengths and weaknesses of each method. This technique is employed to evaluate the shallow velocity structures beneath a seismic array stationed in West Antarctica. Our proposed inversion scheme is also useful for more general applications such as imaging the shallow subsurface of the critical zones, like geothermal reservoirs, and CO2 storage sites.
Funder
Chinese Academy of Sciences
Publisher
American Geophysical Union (AGU)