Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible Cartesian-based mesh

Author:

Trinh Phuong-Thu1ORCID,Brossier Romain2ORCID,Métivier Ludovic3ORCID,Tavard Laure4,Virieux Jean2

Affiliation:

1. Total E&P, Pau, France and Univ. Grenoble Alpes, ISTerre, Grenoble, France.(corresponding author).

2. Univ. Grenoble Alpes, ISTerre, Grenoble, France..

3. Univ. Grenoble Alpes, ISTerre, CNRS, Grenoble, France..

4. Univ. Grenoble Alpes, ISTerre, GRICAD, Grenoble, France..

Abstract

Viscoelastic full-waveform inversion is recognized as a challenging task for current acquisition deployment at the crustal scale. We have developed an efficient formulation based on a time-domain spectral-element method on a flexible Cartesian-based mesh. We consider anisotropic elastic coefficients and isotropic attenuation. Complete gradient expressions including the attenuation contribution spread into those of elastic components are given in a consistent way. The influence of attenuation on the P-wave velocity reconstruction is illustrated through a toy configuration. The numerical implementation of the forward problem includes efficient matrix-vector products for solving second-order elastodynamic equations for 3D geometries: An original high-order integration for topography effects is performed at nearly no extra cost. Combined adjoint and forward field recomputation from the final state and previously saved boundary values allows the estimation of misfit gradients for density, elastic parameters, and attenuation factors with no I/O efforts. Two-level parallelism is implemented over the sources and domain decomposition, which is necessary for a realistic 3D configuration. The misfit gradient preconditioning is performed by a so-called Bessel filter using an efficient differential implementation based on finite-element ingredients on the forward mesh instead of the often-used, costly convolution approach. A 3D synthetic illustration is provided on a subset ([Formula: see text]) of the SEG Advanced Modeling (SEAM) Phase II Foothills model with 4 lines of 20 sources. The structurally based Bessel filter and a simple data hierarchy strategy considering early body waves before all waves including surface waves allow a precise reconstruction of the P- and S-wavespeeds while keeping a smooth density description.

Funder

Rhône-Alpes region

OSUG@2020 labex

Equip@Meso project

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3