Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea

Author:

Amestoy Patrick1,Brossier Romain2,Buttari Alfredo3,L’Excellent Jean-Yves4,Mary Theo5,Métivier Ludovic6,Miniussi Alain7,Operto Stephane7

Affiliation:

1. Université Toulouse III Paul Sabatier, Institut National Polytechnique de Toulouse (INPT)-Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France..

2. Université Grenoble Alpes, Institut des Sciences de la Terre (ISTerre), Grenoble, France..

3. Université Toulouse III Paul Sabatier, Centre National de la Recherche Scientifique (CNRS)-IRIT, Toulouse, France..

4. Université de Lyon, Institut national de recherche en informatique et en automatique (INRIA)-Laboratoire de l'Informatique du Parallélisme (LIP), LIP Ecole Normale Supérieure (ENS) Lyon, INRIA, Lyon, France..

5. Université de Toulouse III Paul Sabatier-IRIT, Toulouse, France..

6. Université Grenoble Alpes, ISTerre/Laboratoire Jean Kuntzmann (LJK), CNRS, Grenoble, France..

7. Université Nice-Sophia Antipolis, Geoazur-CNRS, CNRS, Institut de recherche pour le développement (IRD), Observatoire de la Côte d’Azur, Valbonne, France..

Abstract

Wide-azimuth long-offset ocean bottom cable (OBC)/ocean bottom node surveys provide a suitable framework to perform computationally efficient frequency-domain full-waveform inversion (FWI) with a few discrete frequencies. Frequency-domain seismic modeling is performed efficiently with moderate computational resources for a large number of sources with a sparse multifrontal direct solver (Gauss-elimination techniques for sparse matrices). Approximate solutions of the time-harmonic wave equation are computed using a block low-rank (BLR) approximation, leading to a significant reduction in the operation count and in the volume of communication during the lower upper (LU) factorization as well as offering great potential for reduction in the memory demand. Moreover, the sparsity of the seismic source vectors is exploited to speed up the forward elimination step during the computation of the monochromatic wavefields. The relevance and the computational efficiency of the frequency-domain FWI performed in the viscoacoustic vertical transverse isotropic (VTI) approximation was tested with a real 3D OBC case study from the North Sea. The FWI subsurface models indicate a dramatic resolution improvement relative to the initial model built by reflection traveltime tomography. The amplitude errors introduced in the modeled wavefields by the BLR approximation for different low-rank thresholds have a negligible footprint in the FWI results. With respect to a standard multifrontal sparse direct factorization, and without compromise of the accuracy of the imaging, the BLR approximation can bring a reduction of the LU factor size by a factor of up to three. This reduction is not yet exploited to reduce the effective memory usage (ongoing work). The flop reduction can be larger than a factor of 10 and can bring a factor of time reduction of around three. Moreover, this reduction factor tends to increase with frequency, namely with the matrix size. Frequency-domain viscoacoustic VTI FWI can be viewed as an efficient tool to build an initial model for elastic FWI of 4C OBC data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference73 articles.

1. Robust Memory-Aware Mappings for Parallel Multifrontal Factorizations

2. Amestoy, P. R., J. Anton, C. Ashcraft, A. Buttari, P. Ghysels, J.Y. L’Excellent, X. S. Li, T. Mary, F.H. Rouet, and C. Weisbecker, 2016a, A comparison of parallel rank-structured solvers: Presented at the SIAM Conference on Parallel Processing.

3. Improving Multifrontal Methods by Means of Block Low-Rank Representations

4. Amestoy, P. R., A. Buttari, J.Y. L’Excellent, and T. Mary, 2016b, Complexity and performance of the block low-rank multifrontal factorization: Presented at the SIAM Conference on Parallel Processing, SIAM PP16.

5. Amestoy, P. R., R. Brossier, A. Buttari, J.Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, S. Operto, J. Virieux, and C. Weisbecker, 2015b, 3D frequency-domain seismic modeling with a parallel BLR multifrontal direct solver: 85th Annual International Meeting, SEG, Expanded Abstracts, 3606–3611.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3