Meshing strategies for 3d geo-electromagnetic modeling in the presence of metallic infrastructure

Author:

Castillo-Reyes OctavioORCID,Rulff Paula,Schankee Um Evan,Amor-Martin Adrian

Abstract

AbstractIn 3D geo-electromagnetic modeling, an adequate discretisation of the modeling domain is crucial to obtain accurate forward responses and reliable inversion results while reducing the computational cost. This paper investigates the mesh design for subsurface models, including steel-cased wells, which is relevant for many exploration settings but still remains a numerically challenging task. Applying a goal-oriented mesh refinement technique and subsequent calculations with the high-order edge finite element method, simulations of 3D controlled-source electromagnetic models in the presence of metallic infrastructure are performed. Two test models are considered, each needing a distinct version of approximation methods to incorporate the conductive steel casings of the included wells. The influence of mesh quality, goal-oriented meshing, and high-order approximations on problem sizes, computational cost, and accuracy of electromagnetic responses is investigated. The main insights of our work are: (a) the applied numerical schemes can mitigate the computational burden of geo-electromagnetic modeling in the presence of steel artifacts; (b) investigating the processes driving the meshing of models with embedded metallic infrastructures can lead to adequate strategies to deal with the inversion of such electromagnetic data sets. Based on the modeling results and analyses conducted, general recommendations for modeling strategies are proposed when performing simulations for challenging steel infrastructure scenarios.

Funder

Ministerio de Ciencia e Innovación

H2020 Societal Challenges

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3