Wavefield compression for adjoint methods in full-waveform inversion

Author:

Boehm Christian1,Hanzich Mauricio2,de la Puente Josep2,Fichtner Andreas1

Affiliation:

1. ETH Zurich, Department of Earth Sciences, Switzerland..

2. Computer Applications in Science and Engineering, Barcelona Supercomputing Center — Centro Nacional de Supercomputación, Spain..

Abstract

Adjoint methods are a key ingredient of gradient-based full-waveform inversion schemes. While being conceptually elegant, they face the challenge of massive memory requirements caused by the opposite time directions of forward and adjoint simulations and the necessity to access both wavefields simultaneously for the computation of the sensitivity kernel. To overcome this bottleneck, we have developed lossy compression techniques that significantly reduce the memory requirements with only a small computational overhead. Our approach is tailored to adjoint methods and uses the fact that the computation of a sufficiently accurate sensitivity kernel does not require the fully resolved forward wavefield. The collection of methods comprises reinterpolation with a coarse temporal grid as well as adaptively chosen polynomial degree and floating-point precision to represent spatial snapshots of the forward wavefield on hierarchical grids. Furthermore, the first arrivals of adjoint waves are used to identify “shadow zones” that do not contribute to the sensitivity kernel. Numerical experiments show the high potential of this approach achieving an effective compression factor of three orders of magnitude with only a minor reduction in the rate of convergence. Moreover, it is computationally cheap and straightforward to integrate in finite-element wave propagation codes with possible extensions to finite-difference methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference39 articles.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3