Normalized shaping regularization for robust separation of blended data

Author:

Zhao Qiang1ORCID,Du Qizhen1ORCID,Gong Xufei1ORCID,Li Xiangyang2,Fu Liyun3ORCID,Chen Yangkang4ORCID

Affiliation:

1. China University of Petroleum (East China), Key Laboratory of Deep Oil and Gas, Changjiang West Road 66th, Qingdao 266580, China and Qingdao National Laboratory for Marine Science and Technology, Laboratory for Marine Mineral Resources, Qingdao 266071, China.(corresponding author); .

2. China University of Petroleum, Beijing 102200, China..

3. Chinese Academy of Sciences, Institute of Geology and Geophysics, Beijing 100029, China and China University of Petroleum (East China), Key Laboratory of Deep Oil and Gas, Qingdao 266580, China..

4. Zhejiang University, School of Earth Sciences, Hangzhou, China..

Abstract

Simultaneous source acquisition has attracted more and more attention from geophysicists because of its cost savings, whereas it also brings some challenges that have never been addressed before. Deblending of simultaneous source data is usually considered as an underdetermined inverse problem, which can be effectively solved with a least-squares (LS) iterative procedure between data consistency ([Formula: see text]-norm) and regularization ([Formula: see text]-norm or [Formula: see text]-norm). However, when it comes to abnormal noise that follows non-Gaussian distribution and possesses high-amplitude features (e.g., erratic noise, swell noise, and power line noise), the [Formula: see text]-norm is a nonrobust statistic that can easily lead to suboptimal deblended results. Although abnormal noise can be attenuated in the common source domain at first, it is still challenging to apply a coherency-based filter due to the sparse receiver or crossline sampling, e.g., that commonly found in ocean bottom node (OBN) acquisition. To address this problem, we have developed a normalized shaping regularization to make the inversion-based deblending approach robust for the separation of blended data when abnormal noise exists. Its robustness comes from the normalized shaping operator defined by the confidence interval of normal distribution, which minimizes the abnormal risk to a normal level to satisfy the assumption of LS shaping regularization. In special cases, the proposed approach will revert to the classic LS shaping regularization once the normalized coefficient is large enough. Experimental results on synthetic and field data indicate that the proposed method can effectively restore the separated records from blended data at essentially the same convergence rate as the LS shaping regularization for the abnormal noise-free scenario, but it can obtain better deblending performance and less energy leakage when abnormal noise exists.

Funder

National Key Research & Development Programs of China

National Science Foundation of China

National Science & Technology Major Projects of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3