Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism

Author:

Yang Liuqing1ORCID,Wang Shoudong2ORCID,Chen Xiaohong1ORCID,Chen Wei3ORCID,Saad Omar M.4,Chen Yangkang5ORCID

Affiliation:

1. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China and China University of Petroleum (Beijing), National Engineering Laboratory of Offshore Oil Exploration, Beijing, China.

2. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China and China University of Petroleum (Beijing), National Engineering Laboratory of Offshore Oil Exploration, Beijing, China. (corresponding author)

3. Yangtze University, Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan, China.

4. NRIAG, Seismology Department, ENSN Lab, Helwan, Egypt.

5. The University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Bureau of Economic Geology, Austin, Texas, USA.

Abstract

Underground reservoir information can be obtained through well-log interpretation. However, some logs might be missing due to various reasons, such as instrument failure. A deep-learning-based method that combines a convolutional layer and a long short-term memory (LSTM) layer is proposed to estimate the missing logs without the expensive relogging. The convolutional layer is used to extract the depth-series features initially, which are then input into the LSTM layer. To improve the feature memory and extraction capabilities of the LSTM layer, we construct two LSTM-based components: the first component uses an attention mechanism to optimize the LSTM units by adaptively adjusting network weights, and the second component uses a period-skip mechanism, which enhances the sensitivity of aperiodic changes in the depth series by learning the information of the shallow sequence. In addition, we add an autoregressive component to enhance the linear feature extraction capability while learning the nonlinear relationship between different logs. A total of 13 wells from two different regions are used for experiments, including 11 training and two test wells. We use one well to calculate the uncertainties of four time-series networks, i.e., our proposed network and three benchmark models (recurrent neural network, gated recurrent unit, and LSTM), to demonstrate the stability and robustness of the proposed method. Furthermore, we evaluate the performance of our proposed method in several crossover experiments, e.g., different logging intervals, depths, and input logs. Compared to a state-of-the-art deep learning method and a classic LSTM network, the proposed network has higher reliability, which is reflected in the feature extraction of depth series with a larger span. The experimental results demonstrate that our proposed network can accurately generate sonic and other unknown logs.

Funder

Strategic Cooperation Technology Projects of CNPC and CUPB

National Key RD Program of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3