Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional Laplacian

Author:

Zhu Tieyuan1ORCID,Bai Tong2ORCID

Affiliation:

1. The Pennsylvania State University, Department of Geosciences, EMS Energy Institute, and Institute of Natural Gas Research, University Park, Pennsylvania 16802, USA.(corresponding author).

2. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado, USA..

Abstract

To efficiently simulate wave propagation in a vertical transversely isotropic (VTI) attenuative medium, we have developed a viscoelastic VTI wave equation based on fractional Laplacian operators under the assumption of weak attenuation ([Formula: see text]), where the frequency-independent [Formula: see text] model is used to mathematically represent seismic attenuation. These operators that are nonlocal in space can be efficiently computed using the Fourier pseudospectral method. We evaluated the accuracy of numerical solutions in a homogeneous transversely isotropic medium by comparing with theoretical predictions and numerical solutions by an existing viscoelastic-anisotropic wave equation based on fractional time derivatives. To accurately handle heterogeneous [Formula: see text], we select several [Formula: see text] values to compute their corresponding fractional Laplacians in the wavenumber domain and interpolate other fractional Laplacians in space. We determined its feasibility by modeling wave propagation in a 2D heterogeneous attenuative VTI medium. We concluded that the new wave equation is able to improve the efficiency of wave simulation in viscoelastic-VTI media by several orders and still maintain accuracy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3