Seismic migration in viscoacoustic vertical transversely isotropic media using a pure qP wave equation

Author:

Wu Han1,Sun Chengyu2,Deng Xiaofan1

Affiliation:

1. School of Earth Sciences and Engineering Sun Yat‐Sen University Guangzhou China

2. School of Geosciences China University of Petroleum (East China) Qingdao China

Abstract

AbstractSeismic anisotropic attenuation and anisotropic velocity exist widely in the earth's interior and have a great influence on the propagation of seismic waves. Ignoring the effects of attenuation anisotropy may lead to amplitude imbalance or noise in reflection seismic imaging, thus reducing the quality of the imaging results. In order to incorporate attenuation anisotropy into imaging methods and explore its effect on imaging, based on a novel two‐way pure qP wave equation in viscoacoustic vertical transversely isotropy media, we propose the corresponding reverse time migration and least‐squares reverse time migration method. Both imaging methods can accurately obtain subsurface structure information, especially the least‐squares reverse time migration has the potential to compute accurate subsurface reflectivity. In this paper, we first introduce the pure qP wave equation in viscoacoustic vertical transversely isotropy media. As the equation is derived from the complex dispersion relation of P wave, wave propagation can be simulated without interference of SV wave and limitation of anisotropic parameters. Then, we derive the corresponding linearized wave equation and adjoint gradient for updating the imaging result. Finally, using two synthetic models, we demonstrate the effectiveness of the imaging method and discuss the effect of attenuation anisotropy on seismic imaging.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3