Constitutive model and wave equations for linear, viscoelastic, anisotropic media

Author:

Carcione Jose M.1

Affiliation:

1. Osservatorio Geofisico Sperimentale, P. O. Box 2011 Opicina, 34016 Trieste, Italy

Abstract

Rocks are far from being isotropic and elastic. Such simplifications in modeling the seismic response of real geological structures may lead to misinterpretations, or even worse, to overlooking useful information. It is useless to develop highly accurate modeling algorithms or to naively use amplitude information in inversion processes if the stress‐strain relations are based on simplified rheologies. Thus, an accurate description of wave propagation requires a rheology that accounts for the anisotropic and anelastic behavior of rocks. This work presents a new constitutive relation and the corresponding time‐domain wave equation to model wave propagation in inhomogeneous anisotropic and dissipative media. The rheological equation includes the generalized Hooke’s law and Boltzmann’s superposition principle to account for anelasticity. The attenuation properties in different directions, associated with the principal axes of the medium, are controlled by four relaxation functions of viscoelastic type. A dissipation model that is consistent with rock properties is the general standard linear solid. This is based on a spectrum of relaxation mechanisms and is suitable for wavefield calculations in the time domain. One relaxation function describes the anelastic properties of the quasi‐dilatational mode and the other three model the anelastic properties of the shear modes. The convolutional relations are avoided by introducing memory variables, six for each dissipation mechanism in the 3-D case, two for the generalized SH‐wave equation, and three for the qP − qSV wave equation. Two‐dimensional wave equations apply to monoclinic and higher symmetries. A plane analysis derives expressions for the phase velocity, slowness, attenuation factor, quality factor and energy velocity (wavefront) for homogeneous viscoelastic waves. The analysis shows that the directional properties of the attenuation strongly depend on the values of the elasticities. In addition, the displacement formulation of the 3-D wave equation is solved in the time domain by a spectral technique based on the Fourier method. The examples show simulations in a transversely‐isotropic clayshale and phenolic (orthorhombic symmetry).

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3