A physical model for porosity reduction in sandstones

Author:

Gal Doron1,Dvorkin Jack1,Nur Amos1

Affiliation:

1. Department of Geophysics, Stanford University, Stanford, California 94305-2215

Abstract

The experimental elastic moduli‐porosity trends for clean sandstones can be described by the modified upper Hashin‐Shtrikman (MUHS) bound. One geometrical (but not necessarily geological) realization is: as porosity decreases, the number of the pores stays the same and each pore shrinks while maintaining its shape. This concept of uniform porosity reduction implies that permeability is proportional to the effective porosity squared, and that formation factor is proportional to the inverse of the effective porosity. The effective porosity here refers to the part of the pore‐space that dominates fluid flow. The proposed relations for permeability and formation factor agree well with the experimentally observed values. These laws are different from the often used forms of the Kozeny‐Carman equation and Archie’s law, where permeability is proportional to the total porosity cubed and formation factor is proportional to the inverse of the total porosity squared, respectively. We suggest that the uniform porosity reduction concept be used in consolidated rocks with porosities below 0.3. The transition from high‐porosity unconsolidated sands to consolidated sandstones can be described by the cementation theory: the MUHS moduli‐porosity curves connect with those predicted by the cementation theory at the porosity of about 0.3. This scheme is not appropriate for modeling other porosity reduction mechanisms such as glass bead sintering because, during sintering, the pores do not maintain their shapes, rather they gradually evolve to rounder, stiffer pores.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3