Elasticity of high‐porosity sandstones: Theory for two North Sea data sets

Author:

Dvorkin Jack1,Nur Amos1

Affiliation:

1. Rock Physics Laboratory, Department of Geophysics, Stanford University, Stanford, California 94305-2215

Abstract

We have analyzed two laboratory data sets obtained on high‐porosity rock samples from the North Sea. The velocities observed are unusual in that they seem to disagree with some simple models based on porosity. On the other hand, the rocks are unusually poorly‐cemented (for laboratory studies, at least), and we investigate the likelihood that this is the cause of the disagreement. One set of rocks, from the Oseberg Field, is made of slightly cemented quartz sands. We find that we can model their dry‐rock velocities using a cementation theory where the grains mechanically interact through cement at the grain boundaries. This model does not allow for pressure dependence. The other set of rocks, from the Troll Field, is almost completely uncemented. The grains are held together by the applied confining pressure. In this case, a lower bound for the velocities can be found by using the Hertz‐Mindlin contact theory (interaction of uncemented spheres) to predict velocities at a critical porosity, combined with the modified Hashin‐Strikman lower bound for other porosities. This model, which allows for pressure‐dependence, also predicts fairly large Poisson’s ratios for saturated rocks, such as those observed in the measurements. The usefulness of these theories may be in estimating the nature of cement in rocks from measurements such as sonic logs. The theories could help indicate sand strength in poorly consolidated formations and predict the likelihood of sand production. Both theoretical methods have analytical expressions and are ready for practical use.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3