Permeability and Elastic Properties of Rocks From the Northern Hikurangi Margin: Implications for Slow‐Slip Events

Author:

Tisato Nicola1ORCID,Bland Carolyn D.12ORCID,Van Avendonk Harm3ORCID,Bangs Nathan3ORCID,Garza Hector1,Alamoudi Omar1ORCID,Olsen Kelly34ORCID,Gase Andrew35ORCID

Affiliation:

1. Department of Earth and Planetary Sciences Jackson School of Geosciences The University of Texas at Austin Austin TX USA

2. Now at Pariveda Solutions Dallas TX USA

3. Jackson School of Geosciences Institute for Geophysics The University of Texas at Austin Austin TX USA

4. Now at Descartes Labs Sante Fe NM USA

5. Now at Geology Department Western Washington University Bellingham WA USA

Abstract

AbstractFluid flow and pore‐pressure cycling are believed to control slow slip events (SSEs), such as those that frequently occur at the northern Hikurangi margin of New Zealand. To better understand fluid flow in the forearc system we examined the relationship between several physical properties of Cretaceous‐to‐Pliocene sedimentary rocks from the Raukumara peninsula. We found that the permeability of the deep wedge is too low to drain fluids, but fracturing increases permeability by orders of magnitude, making fracturing key for fluid flow. In weeks to months, plastic deformation, swelling, and possibly not‐yet‐identified mechanisms heal the fractures, restoring the initial permeability. We conclude that overpressures at the northern HM might partly dissipate during SSEs due to enhanced permeability near faults. However, in the months following an SSE, healing in the prism will lower permeability, forcing pore pressure to rise and a new SSE to occur.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3