Probabilistic inversion of seismic data for reservoir petrophysical characterization: Review and examples

Author:

Grana Dario1ORCID,Azevedo Leonardo2ORCID,de Figueiredo Leandro3,Connolly Patrick4ORCID,Mukerji Tapan5ORCID

Affiliation:

1. University of Wyoming, Department of Geology and Geophysics, Laramie, Wyoming, USA. (corresponding author)

2. University of Lisbon, Instituto Superior Técnico, Department of Geoscience, Lisbon, Portugal.

3. LTrace, Florianopolis, Santa Catarina, Brazil.

4. PCA Ltd., Ascot, UK.

5. Stanford University, Department of Energy Resources Engineering, Stanford, California, USA.

Abstract

The physics that describes the seismic response of an interval of saturated porous rocks with known petrophysical properties is relatively well understood and includes rock physics, petrophysics, and wave propagation models. The main goal of seismic reservoir characterization is to predict the rock and fluid properties given a set of seismic measurements by combining geophysical models and mathematical methods. This modeling challenge is generally formulated as an inverse problem. The most common geophysical inverse problem is the seismic (or elastic) inversion, i.e., the estimation of elastic properties, such as seismic velocities or impedances, from seismic amplitudes and traveltimes. The estimation of petrophysical properties, such as porosity, lithology, and fluid saturations, also can be formulated as an inverse problem and is generally referred to as rock-physics (or petrophysical) inversion. Several deterministic and probabilistic methods can be applied to solve seismic inversion problems. Deterministic algorithms predict a single solution, which is a “best” estimate or the most likely value of the model variables of interest. In probabilistic algorithms, on the other hand, the solution is the probability distribution of the model variables of interest, which can be expressed as a conditional probability density function or a set of model realizations conditioned on the data. The probabilistic approach provides a quantification of the uncertainty of the solution in addition to the most likely model. Our goal is to define the terminology, present an overview of probabilistic seismic and rock-physics inversion methods for the estimation of petrophysical properties, demonstrate the fundamental concepts with illustrative examples, and discuss the recent research developments.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3