Similarity attributes from differential resolution components

Author:

Honório Bruno César Zanardo1,da Costa Correia Ulisses Miguel1,de Matos Marcílio Castro2,Vidal Alexandre Campane1

Affiliation:

1. University of Campinas — UNICAMP, Department of Geology and Natural Resources, Campinas, Brazil..

2. SISMO Research & Consulting, Rio de Janeiro, Brazil..

Abstract

Seismic resolution plays an important role in the delineation of structural and stratigraphic features. The resolution improvement directly affects the seismic attributes and, consequently, the interpretation of a given feature. However, the broadband data do not necessarily provide the best insight for seismic attribute evaluation. Particularly, geologic discontinuities, such as karsts, faults, and fractures, can have different seismic expressions according to their intrinsic scales, and, therefore, they are better illuminated in a given frequency range. To extract dissimilar characteristics in different frequency bands, we have combined a recently developed spectral enhancement method based on differential resolution (DR) and similarity attributes. The DR algorithm is simultaneously used for frequency enhancement and acting as a pseudofilter, allowing us to compute similarity attributes at different frequency bands. The similarity computation follows the reflector dip of each DR subband and adjusts its analysis window accordingly to the dominant frequency within the subbands. Then, the subband similarities are combined in the red-green-blue-alpha color space, allowing a more detailed view of the geology under investigation. Although more expensive in terms of processing time because of all the steps needed for each subband, the proposed strategy proved to be a great improvement over the conventional procedure of detecting and delineating discontinuities in fault and karst structures when treating seismic data from an offshore carbonate field in Campos Basin, Brazil.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference18 articles.

1. 3D volumetric multispectral estimates of reflector curvature and rotation

2. High-resolution gathers by inverse Q filtering in the wavelet domain

3. Seismic Attributes for Prospect Identification and Reservoir Characterization

4. Fraser, G. B., and J. Neep, 2004, Increasing seismic resolution using spectral blueing and colored inversion: Cannonball field, Trinidad: 74th Annual International Meeting, SEG, Expanded Abstracts, 1794–1797.

5. Principal component spectral analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3