Identification of shallow geohazard channels based on discontinuity seismic attributes in the South Caspian Sea

Author:

Karbalaali Haleh1,de Groot Paul2ORCID,Javaherian Abdolrahim3ORCID,Qayyum Farrukh2,Dahlke Stephan4,Torabi Siyavash5

Affiliation:

1. Amirkabir University of Technology, Department of Petroleum Engineering, Tehran, Iran..

2. dGB Earth Sciences, Enschede, The Netherlands..

3. Formerly University of Tehran, Institute of Geophysics, Tehran, Iran; presently Amirkabir University of Technology, Department of Petroleum Engineering, Tehran, Iran..

4. Phillips University, Department of Mathematics and Computer Sciences, Marburg, Germany..

5. Dana Geophysics Company, Tehran, Iran..

Abstract

Identification of geomorphological features in seismic data is a key element of seismic interpretation. Channels in the shallow subsurface are potential geohazards. At deeper levels, they can be the actual targets for (horizontal) drilling. Either way, it is important to optimally delineate these features prior to well location positioning and drilling. We have studied a poststack 3D seismic data from the South Caspian Sea featuring shallow channels that are considered potential geohazards for drilling operations. In the first step, we attenuate the acquisition footprints along the inline direction using a geostatistics approach based on factorial kriging. To better visualize channels in the presence of stratigraphic dips, we create a dense set of horizons using an inversion-based flattening algorithm. In the next step, we compare various discontinuity attributes such as semblance, similarity, curvature, and the relatively new attribute based on the multiscale and multidirectional shearlet transformation to determine which one best images our features of interest. Curvature attributes clearly image channel levies (positive curvature) and channel centers (negative curvature). Lateral changes in the curvature magnitude infer sedimentation from the north. Similarity, semblance, and shearlet transform attributes also successfully delineate channel edges, but these attributes do not contain additional geologic information. In the final step, we qualitatively analyze channel thickness variations by the red-green-blue blending of three spectral components based on short window Fourier transforms.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3