Principal component spectral analysis

Author:

Guo Hao123,Marfurt Kurt J.123,Liu Jianlei123

Affiliation:

1. University of Houston, Allied Geophysical Laboratories, Houston, Texas, U.S.A. .

2. The University of Oklahoma, ConocoPhillips School of Geology and Geophysics, Norman, Oklahoma, U.S.A. .

3. Chevron Energy Technology Company, Houston, Texas, U.S.A. .

Abstract

Spectral decomposition methods help illuminate lateral changes in porosity and thin-bed thickness. For broadband data, an interpreter might generate 80 or more somewhat redundant amplitude and phase spectral components spanning the usable seismic bandwidth at [Formula: see text] intervals. Large numbers of components can overload not only the interpreter but also the display hardware. We have used principal component analysis to reduce the multiplicity of spectral data and enhance the most energetic trends inside the data. Each principal component spectrum is mathematically orthogonal to other spectra, with the importance of each spectrum being proportional to the size of its corresponding eigenvalue. Principal components are ideally suited to identify geologic features that give rise to anomalous moderate- to high-amplitude spectra. Unlike the input spectral magnitude and phase components, the principal component spectra are not direct indicators of bed thickness. By combining the variability of multiple components, principal component spectra highlight stratigraphic features that can be interpreted using a seismic geomorphology workflow. By mapping the three largest principal components using the three primary colors of red, green, and blue, we could represent more than 80% of the spectral variance with a single image. We have applied and validated this workflow using a broadband data volume containing channels draining an unconformity, which was acquired over the Central Basin Platform, Texas, U.S.A. Principal component analysis reveals a channel system with only a few output data volumes. The same process provides the interpreter with flexibility to remove any unwanted high-amplitude geologic trends or random noise from the original spectral components by eliminating those principal components that do not aid in delineation of prospective features with their interpretation during the reconstruction process.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3