Mode misidentification in Rayleigh waves: Ellipticity as a cause and a cure

Author:

Boaga Jacopo1,Cassiani Giorgio1,Strobbia Claudio L.2,Vignoli Giulio3

Affiliation:

1. University of Padova, Department of Geoscience, Padova, Italy..

2. Total E&P, Pau, France..

3. Aarhus University, Hydrogeophysics Group, Aarhus C, Denmark..

Abstract

The surface wave method is a popular tool for geotechnical characterization because it supplies a cost-effective testing procedure capable of retrieving the shear wave velocity structure of the near-surface. Several acquisition and processing approaches have been developed to infer the Rayleigh wave dispersion curve which is then inverted. Typically, in active testing, single-component vertical receivers are used. In most cases, the inversion is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode, unless clear evidence dictates the existence of a more complex response, e.g., in presence of low-velocity layers and inversely dispersive sites. A correct identification of the modes is essential to avoid serious errors. Here we consider the typical case of higher-mode misidentification known as “osculation” (“kissing”), where the energy peak shifts at low frequencies from the fundamental to the first higher mode. This jump occurs, with a continuous smooth transition, around a well-defined frequency where the two modes get very close to each other. Osculation happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired active data affect the spectral and modal resolution, making it often impossible to identify the presence of two modes. In some cases, modes have a very close root and cannot be separated at the osculation point. In such cases, mode misidentification can create a large overestimation of the bedrock velocity and a large error on its depth. We examine the subsoil conditions that can generate this unwanted condition, and the common field acquisition procedures that can contribute to producing data having such deceptive Rayleigh dispersion characteristics. This mode misidentification depends strongly on the usual approach of measuring only the vertical component of ground motion, as the mode osculation is linked to the Rayleigh wave ellipticity polarization, and therefore we conclude that multicomponent data, using also horizontal receivers, can help discern the multimodal nature of surface waves. Finally, we introduce a priori detectors of subsoil conditions, based on passive microtremor measurements, that can act as warnings against the presence of mode osculation, and relate these detectors to the frequencies at which dispersion curves can be misidentified. Theoretical results are confirmed by real data acquisition tests.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference50 articles.

1. Ampuero, J. P., 2008, SEM2DPACK a spectral element method tool for 2D wave propagation and earthquake source dynamics: User’s Guide Version 2.3.4, http://sourceforge.net/projects/sem2d/, accessed May 2012.

2. S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum

3. Bard, P. Y., 1998, Microtremor measurements: A tool for site effect estimation? Manuscript for Proceedings of 2nd International Symposium on the Effect of Surface Geology on Seismic Motion.

4. From surface wave inversion to seismic site response prediction: Beyond the 1D approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3