Distributed acoustic sensing for seismic surface wave data acquisition in an intertidal environment

Author:

Trafford Andrew1,Ellwood Robert2,Godfrey Alastair3,Minto Christopher3,Donohue Shane4ORCID

Affiliation:

1. University College Dublin, Ireland & SFI Research Centre in Applied Geosciences (iCRAG), School of Civil Engineering, Dublin, Ireland.

2. Formerly Optasense Limited, Farnborough, UK; presently QinetiQ, Farnborough, UK.

3. Formerly Optasense Limited, Farnborough, UK; presently Indeximate Limited, Hinckley, UK.

4. University College Dublin, Ireland & SFI Research Centre in Applied Geosciences (iCRAG), School of Civil Engineering, Dublin, Ireland. (corresponding author)

Abstract

The application of distributed acoustic sensing (DAS) for shallow marine seismic investigations is assessed, in particular with respect to the collection of seismic surface wave data in an intertidal setting. Appropriate selection and directional sensitivity of fiber-optic cables is considered and the measured data is validated with respect to conventional seismic data acquisition approaches, using geophones and hydrophones, along with independent borehole and seismic cone penetration test (SCPT) data. In terms of cable selection, a reduction in amplitude and frequency response of an armored cable is observed, when compared with an unarmored cable. For seismic surface wave surveys in an offshore environment where the cable would need to withstand significant stresses, the use of the armored variant with limited loss in frequency response may be acceptable from a practical perspective. The DAS approach also has indicated good consistency with conventional means of surface wave data acquisition, and the inverted [Formula: see text] also is very consistent with downhole SCPT data. Observed differences in phase velocity between high tide (Scholte wave propagation) and low tide (Rayleigh wave propagation) are not thought to be related to the particular type of interface wave due to shallow water depth. These differences are more likely to be related to the development of capillary forces in the partially saturated granular medium at low tide. Overall, this study demonstrates that our novel approach of DAS using seabed fiber-optic cables in the intertidal environment is capable of rapidly providing near-surface S-wave velocity data across considerable spatial scales (multikilometer) at high resolution, which is beneficial for the design of subsea cables routes and landfall locations. The associated reduction in deployment and survey duration, when compared with conventional approaches, is particularly important when working in the marine environment due to potentially short weather windows and expensive downtime.

Funder

Geological Survey of Ireland (GSI), Science Foundation Ireland (SFI), the European Regional Development Fund and Optasense Limited

Science Foundation Ireland, Geological Survey of Ireland and the Environmental Protection Agency

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3