Affiliation:
1. King Abdullah University of Science and Technology Thuwal Saudi Arabia
2. School of Science Department of Geosciences University of Padova Padua Italy
3. Fugro Nootdorp Netherlands
Abstract
AbstractMulti‐channel analysis of surface waves is a seismic method employed to obtain useful information about shear‐wave velocities in the near surface. A fundamental step in this methodology is the extraction of dispersion curves from dispersion spectra, with the latter usually obtained by applying specific processing algorithms onto the recorded shot gathers. Although the extraction process can be automated to some extent, it usually requires extensive quality control, which can be arduous for large datasets. We present a novel approach that leverages deep learning to identify a direct mapping between seismic shot gathers and their associated dispersion curves (both fundamental and first higher order modes), therefore by‐passing the need to compute dispersion spectra. Given a site of interest, a set of 1D compressional and shear velocities and density models are created using prior knowledge of the local geology; pairs of seismic shot gathers and Rayleigh‐wave phase dispersion curves are then numerically modelled and used to train a simplified residual network. The proposed approach is shown to achieve high‐quality predictions of dispersion curves on a synthetic test dataset and is, ultimately, successfully deployed on a field dataset. Various uncertainty quantification and convolutional neural network visualization techniques are also presented to assess the quality of the inference process and better understand the underlying learning process of the network. The predicted dispersion curves are inverted for both the synthetic and field data; in the latter case, the resulting shear‐wave velocity model is plausible and consistent with prior geological knowledge of the area. Finally, a comparison between the manually picked fundamental modes with the predictions from our model allows for a benchmark of the performance of the proposed workflow.
Funder
King Abdullah University of Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献