Effects of fluids and dual-pore systems on pressure-dependent velocities and attenuations in carbonates

Author:

Agersborg Remy12,Johansen Tor Arne12,Jakobsen Morten12,Sothcott Jeremy12,Best Angus12

Affiliation:

1. University of Bergen, Department of Earth Science and Centre for Integrated Petroleum Research, Bergen, Norway. .

2. National Oceanography Centre, Southampton, U.K. .

Abstract

The effects of fluid substitution on P- and S-wave velocities in carbonates of complex texture are still not understood fully. The often-used Gassmann equation gives ambiguous results when compared with ultrasonic velocity data. We present theoretical modeling of velocity and attenuation measurements obtained at a frequency of [Formula: see text] for six carbonate samples composed of calcite and saturated with air, brine, and kerosene. Although porosities (2%–14%) and permeabilities [Formula: see text] are relatively low, velocity variations are large. Differences between the highest and lowest P- and S-wave velocities are about 18% and 27% for brine-saturated samples at 60 and [Formula: see text] effective pressure, respectively. S-wave velocities are measured for two orthogonal polarizations; for four of six samples, anisotropy is revealed. TheGassmann model underpredicts fluid-substitution effects by [Formula: see text] for three samples and by as much as 5% for the rest of the six samples. Moreover, when dried, they also show decreasing attenuation with increasing confining pressure. To model this behavior, we examine a pore model made of two pore systems: one constitutes the main and drainable porosity, and the other is made of undrained cracklike pores that can be associated with grain-to-grain contacts. In addition, these dried rock samples are modeled to contain a fluid-filled-pore system of grain-to-grain contacts, potentially causing local fluid flow and attenuation. For the theoretical model, we use an inclusion model based on the [Formula: see text]-matrix approach, which also considers effects of pore texture and geometry, and pore fluid, global- and local-fluid flow. By using a dual-pore system, we establish a realistic physical model consistently describing the measured data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3