Numerical and experimental study of ultrasonic seismic waves propagation and attenuation on high‐quality factor samples

Author:

Deheuvels Marine12ORCID,Faucher Florian2,Brito Daniel1ORCID

Affiliation:

1. Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR Pau France

2. Inria MAKUTU ‐ Universite de Pau et des Pays de l'Adour, TotalEnergies, CNRS Pau France

Abstract

AbstractWe propose an approach for measuring seismic attenuation at ultrasonic frequencies on laboratory‐scale samples. We use a Gaussian filter to select a bandwidth of frequencies to identify the attenuation in a small window and, by moving the window across the frequency content of the data, we determine the frequency‐dependent attenuation function. We assess the validity of the method with three‐dimensional numerical simulations of seismic wave propagation across different sample geometries, using free surface boundary conditions. We perform the simulations using viscoelastic media under various seismic attenuation models. Our numerical results indicate that we can successfully recover the representative viscoelastic attenuation parameters of the media, regardless of the sample geometry, by processing the seismic signal recorded either within the volume or at the boundaries. Due to the equipartition phenomenon, the energy of S‐waves is consistently higher in seismic records than that of P‐waves. Therefore, we systematically recover the attenuating properties of S‐waves in the medium. We also conduct experiments of seismic wave propagation on samples of aluminum and Fontainebleau sandstone to validate our approach with real data. The quality factor of the S‐wave in the aluminum medium increases from 300 to 7000 between 60 kHz and 1.2 MHz. The Fontainebleau sandstone, which is more attenuating, exhibits a that increases from 200 at 60 kHz to 1000 at 1.2 MHz. With our approach, we are not only able to recover the attenuation property but also identify the frequency‐dependent attenuation model of the samples. Our method allows for seismic attenuation recovery at ultrasonic frequencies in low‐attenuating media.

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3