Laboratory experiments and theoretical study of pressure and fluid influences on acoustic response in tight rocks with pore microstructure

Author:

He Yan‐Xiao1ORCID,Wang Shangxu1,Li Hongbing2,Dai Xiaofeng2,Tang Genyang1,Sun Chao3,Yuan Sanyi1,Yin Hanjun4ORCID,Zhang Jialiang5,Shi Peidong6,Zhang Huiqing5,Wei Pengpeng5

Affiliation:

1. National Key Laboratory of Petroleum Resources and Engineering, CNPC Key Laboratory of Geophysical Exploration College of Geophysics, China University of Petroleum (Beijing) Beijing China

2. Research Institute of Petroleum Exploration and Development Beijing China

3. China University of Mining and Technology Xuzhou Jiangsu China

4. College of Earth Sciences, Hebei GEO University Shijiazhuang Hebei China

5. PetroChina Dagang Oilfield Branch Tianjin China

6. Swiss Federal Institute of Technology Zurich Zurich Switzerland

Abstract

AbstractWave‐induced fluid flow is considered to be a major source of seismic attenuation and dispersion in porous rocks. From the physical description of partially saturated reservoirs, numerous analytical solutions based on upscaling homogenization theories have been employed to calculate equivalent frequency‐dependent poroelastic media. Nevertheless, dispersion and attenuation predictions are often not reasonably consistent with laboratory and field measurements in a broad frequency range, particularly due to influences of biphasic fluids and their distribution, presence of heterogeneities on various length scales, and pore microstructure. We investigate the role of pore microstructure on pressure and fluid saturation dependence of elastic velocities in tight sandstones. Previous work points out that differentiating the impacts of heterogeneities at various scales on dispersion within seismic exploration and sonic frequencies can be very difficult. In practice, this is because fluid‐related dispersion mechanisms are impossible to be independent. Thus, it is important for a theoretical and more quantitative analysis of the relative contribution of interrelated energy dissipation processes through a better understanding of combined influences due to the presence of microscopic and mesoscopic heterogeneities. Based on microscopic squirt flow and mesoscopic flow in a partially saturated medium, we develop a poroelastic model that allows evaluating the overall frequency‐dependent dispersion via considering a random distribution of fluid heterogeneities as well as the broadly distributed aspect ratio of compliant pores. Experimental validation of the model is accomplished via a comprehensive comparison of predictions with measurements of partially saturated velocities versus pressure and fluid for sandstones with specific pore microstructures.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3