Estimation of layer thickness and velocity changes using 4D prestack seismic data

Author:

Røste Thomas1,Stovas Alexey1,Landrø Martin1

Affiliation:

1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, S.P. Andersens vei 15A, N-7491 Trondheim, Norway. .

Abstract

In some hydrocarbon reservoirs, severe compaction of the reservoir rocks is observed. This compaction is caused by production and is often associated with stretching and arching of the overburden rocks. Time-lapse seismic data can be used to monitor these processes. Since compaction and stretching cause changes in layer thickness as well as seismic velocities, it is crucial to develop methods to distinguish between the two effects. We introduce a new method based on detailed analysis of time-lapse prestack seismic data. The equations are derived assuming that the entire model consists of only one single layer with no vertical velocity variations. The method incorporates lateral variations in (relative) velocity changes by utilizing zero-offset and offset-dependent time shifts. To test the method, we design a 2D synthetic model that undergoes severe reservoir compaction as well as stretching of the overburden rocks. Finally, we utilize the method to analyze a real 2D prestack time-lapse seismic line from the Valhall field, acquired in 1992 and 2002. For a horizon at a depth of around [Formula: see text], which is near the top reservoir horizon, a subsidence of [Formula: see text] and a velocity decrease of [Formula: see text] for the sequence from the sea surface to the top reservoir horizon are estimated. By assuming that the base of the reservoir remains constant in depth, a reservoir compaction of 3.6% (corresponding to a subsidence of the top reservoir horizon of [Formula: see text]) and a corresponding reservoir velocity increase of 6.7% (corresponding to a velocity increase of [Formula: see text]) are estimated.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3