Affiliation:
1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, S.P. Andersens vei 15A, N-7491 Trondheim, Norway. .
Abstract
In some hydrocarbon reservoirs, severe compaction of the reservoir rocks is observed. This compaction is caused by production and is often associated with stretching and arching of the overburden rocks. Time-lapse seismic data can be used to monitor these processes. Since compaction and stretching cause changes in layer thickness as well as seismic velocities, it is crucial to develop methods to distinguish between the two effects. We introduce a new method based on detailed analysis of time-lapse prestack seismic data. The equations are derived assuming that the entire model consists of only one single layer with no vertical velocity variations. The method incorporates lateral variations in (relative) velocity changes by utilizing zero-offset and offset-dependent time shifts. To test the method, we design a 2D synthetic model that undergoes severe reservoir compaction as well as stretching of the overburden rocks. Finally, we utilize the method to analyze a real 2D prestack time-lapse seismic line from the Valhall field, acquired in 1992 and 2002. For a horizon at a depth of around [Formula: see text], which is near the top reservoir horizon, a subsidence of [Formula: see text] and a velocity decrease of [Formula: see text] for the sequence from the sea surface to the top reservoir horizon are estimated. By assuming that the base of the reservoir remains constant in depth, a reservoir compaction of 3.6% (corresponding to a subsidence of the top reservoir horizon of [Formula: see text]) and a corresponding reservoir velocity increase of 6.7% (corresponding to a velocity increase of [Formula: see text]) are estimated.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献