Third‐order elasticity of transversely isotropic field shales

Author:

Bakk Audun1ORCID,Duda Marcin1ORCID,Xie Xiyang1ORCID,Stenebråten Jørn F.1ORCID,Yan Hong2ORCID,MacBeth Colin3ORCID,Holt Rune M.12ORCID

Affiliation:

1. Department of Applied Geoscience SINTEF Trondheim Norway

2. Department of Geoscience and Petroleum Norwegian University of Science and Technology Trondheim Norway

3. Institute of GeoEnergy Engineering Heriot‐Watt University Edinburgh UK

Abstract

AbstractThe formations above a producing reservoir can exhibit large mechanical changes, creating a risk of significant subsidence and loss of rock integrity. These changes can be monitored by time‐lapse seismic acquisition, which measures the corresponding velocity changes via time‐shifts. Third‐order elastic theory can be used to connect subsurface strains and stress changes to these seismic attribute changes. Existing models assume isotropic strain dependence of the dynamic stiffness in shales. It is important to re‐evaluate this isotropic assumption considering the inherent anisotropy of shales and their abundance in the overburden. Thus, we instead propose a third‐order elastic model with a transversely isotropic strain dependence of the dynamic stiffness. When calibrated, this new model satisfactorily predicted P‐wave velocity changes determined in undrained laboratory experiments conducted on overburden field shales, covering a wide range of propagation directions and stress variations. The shales exhibit anisotropic dynamic strain sensitivity, resulting in a significantly higher strain sensitivity predicted for Thomsen's anisotropy parameters epsilon and delta subjected to a uniaxial strain parallel to the horizontal bedding plane compared to the vertical direction. Geomechanical modelling, considering a depleting disk‐shaped reservoir surrounded by shales, was employed to predict the dynamic stiffness changes of the overburden using the laboratory‐calibrated third‐order elastic model. The overburden time‐shifts increased with offset angle, peaking at about 45°, suggesting a strong influence of shear strains on the time‐shifts. In contrast, a corresponding model with an isotropic third‐order elastic tensor, calibrated to the same data, exhibited a significantly lower sensitivity to the shear strains. These results underscore the importance of considering the anisotropic strain dependence of the dynamic stiffness when studying shales. Interpreting offset‐dependent trends in pre‐stack time‐lapse seismic data, along with geomechanical modelling and an appropriate strain‐dependent rock physics model, can assist in quantifying subsurface strains and stress changes.

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3