A review and analysis of errors in post‐stack time‐shift interpretation

Author:

MacBeth Colin1ORCID,Izadian Saeed1

Affiliation:

1. Institute of GeoEnergy Engineering Heriot‐Watt University Edinburgh UK

Abstract

AbstractThis study complements two earlier papers on the interpretation and estimation of post‐stack time‐shifts that detail the most popular measurement methods to date. In this current work, the focus is on describing the magnitude and identifying the origin of the uncertainty present in these time‐shift values. We also consider how the underlying assumptions behind conventional time‐shift estimation methods can contribute to the inadequate resolution of the subsurface time‐lapse changes. The various errors fall into three broad categories: (1) those related to intrinsic data limits that cannot be avoided; (2) those associated with seismic measurement methods that can be corrected with some effort; and finally (3) those that arise due to approximations to the wave physics made during the design or implementation of the methods. In the first category are limitations due to sampling rate and signal‐to‐noise ratio, and wavelet interferences resulting from the narrow band nature of the seismic data and the heterogeneous nature of the geology itself. The effects produce errors of typically a fraction of a millisecond, but exceptionally in 4D data with poor repeatability up to 1 ms. In the second category are acquisition and processing errors. These are usually of the order of a few milliseconds but can reach up to 10s of milliseconds and are, therefore, essential to correct. It is possible to correct the effects of tides and seawater variations in marine acquisition if these changes are monitored and measured. Navigation and timing are identified as issues to consider carefully. For land data, daily and seasonal near‐surface variations are still problematic, and source and sensors must be buried to deliver interpretable time‐shifts. The impact of choices made during processing can be significant but is specific to the workflow and dataset and thus cannot be generically assessed. However, the effects from residual multiples can be identified and treated. Of moderate importance is the third category of errors, which consists of four items. Of these, the effect of lateral image shifts and amplitude effects are judged to play a minor role. Deviation from the assumption of vertical ray‐paths during post‐stack analysis appears to be of concern only for reservoirs with noticeably dipping structures and strong contrasts. The effect of pre‐stack variations on the post‐stack measurements remains a topic to be more thoroughly examined, and the conclusion is unclear. Finally, it is apparent that uncertainties in all categories are strongly dependent on the field setting and geographical location.

Funder

China National Offshore Oil Corporation

Petrobras

Abu Dhabi National Oil Company

Aker BP

Shell

BP

BHP

Woodside

ConocoPhillips

Equinor

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3