Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example

Author:

Key Kerry12,Weiss Chester12

Affiliation:

1. University of California San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0225. .

2. Sandia National Laboratories, Geophysics Department, P. O. Box 5800 MS-0750, Albuquerque, New Mexico 87185. .

Abstract

Existing numerical modeling techniques commonly used for electromagnetic (EM) exploration are bound by the limitations of approximating complex structures using a rectangular grid. A more flexible tool is the adaptive finite-element (FE) method using unstructured grids. Composed of irregular triangles, an unstructured grid can readily conform to complicated structural boundaries. To ensure numerical accuracy, adaptive refinement using an a posteriori error estimator is performed iteratively to refine the grid where solution accuracy is insufficient. Two recently developed asymptotically exact a posteriori error estimators are based on a superconvergent gradient recovery operator. The first relies solely on the normed difference between the recovered gradients and the piecewise constant FE gradients and is effective for lowering the global error in the FE solution. For many problems, an accurate solution is required only in a few discreteregions and a more efficient error estimator is possible by considering the local influence of errors from coarse elements elsewhere in the grid. The second error estimator accomplishes this by using weights determined from the solution to an appropriate dual problem to modify the first error estimator. Application of these methods for 2D magnetotelluric (MT) modeling reveals, as expected, that the dual weighted error estimator is far more efficient in achieving accurate MT responses. Refining about 15% of elements per iteration gives the fastest convergence rate. For a given refined grid, the solution error at higher frequencies varies in proportion to the skin depth, requiring refinement about every two decades of frequency. The transverse electric (TE) and transverse magnetic (TM) modes exhibit different field behavior, and refinement should consider the effects of both. An example resistivity model of seafloor bathymetry underlain by complex salt intrusions and dipping and faulted sedimentary layers illustrates the benefits of this new technique.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3