Including geological orientation information into geophysical inversions with unstructured tetrahedral meshes

Author:

Kangazian Mitra1ORCID,Farquharson Colin G1ORCID

Affiliation:

1. Department of Earth Sciences, Memorial University of Newfoundland , St. John’s, NL A1B 3X5 , Canada

Abstract

SUMMARY Minimum-structure, or Occam’s style of, inversion introduces a regularization function into the underdetermined geophysical inverse problems to stabilize the inverse problem and mitigate its non-uniqueness. The regularization function is typically designed such that it can incorporate a priori information into the inversion framework, thus constructing models that have more plausible representations of the true Earth’s subsurface structure. One type of a priori information is geological orientation information such as strike, dip and tilt angles of the subsurface structure. This type of information can be incorporated into inverse problems through the roughness operators. Designing such roughness operators for inversion frameworks using unstructured tetrahedral meshes is not as straightforward as for inversion frameworks using structured meshes due to the arbitrary and complex geometry of unstructured meshes. Researchers have developed methods which allow us to incorporate geological orientation information into inversion frameworks with unstructured tetrahedral meshes. The majority of these methods consider each cell in a package with its neighbours, hence, the constructed models are not as sharp as desired if the regularization function is measured using an $\ell _1$-type measure instead of the $\ell _2$ norm. To address this issue, we propose a method that calculates the directional derivatives of physical property differences between two adjacent cells normalized by the distance between the cell centroids. This approach is able to both incorporate geological orientation information into the inversion framework and construct models with sharp boundaries for the scenarios in which the regularization term is quantified by an $\ell _1$-type measure. This method is an integral-based approach, therefore, the roughness operators are scaled appropriately by the cell volumes, which is an important characteristic for the inversions with unstructured meshes. To assess the performance and the capability of the proposed method, it was applied to 3-D synthetic gravity and magnetotelluric examples. The gravity example was also used to investigate the impact of applying the depth weighting function inside and outside the roughness operators for the scenarios that the model objective function is measured by an $\ell _1$ norm. The examples show that the proposed method is able to construct models with a reasonable representation of the strike and dip directions of the true subsurface model with sharper boundaries if the regularization function is quantified by an $\ell _1$-type measure. The examples also demonstrate the proposed method behaves numerically well, and has a fast convergence rate.

Funder

Petroleum Exploration Enhancement Program of the province of Newfoundland & Labrador

Memorial University of Newfoundland

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3