Simulating 2-D magnetotelluric responses using vector-quantized temporal associative memory artificial neural network-based approaches

Author:

Mukwachi Phongphan,Arnonkijpanich Banchar,Sarakorn WeerachaiORCID

Abstract

AbstractIn this research, we explore the application of artificial neural networks, specifically the vector-quantized temporal associative memory (VQTAM) and VQTAM coupled with locally linear embedding (VQTAM-LLE) techniques, for simulating 2-D magnetotelluric forward modeling. The study introduces the concepts of VQTAM and VQTAM-LLE in the context of simulating 2-D magnetotelluric responses, outlining their underlying principles. We rigorously evaluate the accuracy and efficiency of both VQTAM variants through extensive numerical experiments conducted on diverse benchmark resistivity and real-terrain models. The results demonstrate the remarkable capability of VQTAM and VQTAM-LLE in accurately and efficiently predicting apparent resistivity and impedance phases, surpassing the performance of traditional numerical methods. This study underscores the potential of VQTAM and VQTAM-LLE as valuable computational alternatives for simulating magnetotelluric responses, offering a viable choice alongside conventional methods.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3