High‐resolution seismic traveltime tomography incorporating static corrections applied to a till‐covered bedrock environment

Author:

Bergman Björn1,Tryggvason Ari1,Juhlin Christopher1

Affiliation:

1. Uppsala Universitet, Department of Earth Sciences, Villavägen 16, SE‐752 36 Uppsala, Sweden. Emails:

Abstract

A major obstacle in tomographic inversion is near‐surface velocity variations. Such shallow velocity variations need to be known and correctly accounted for to obtain images of deeper structures with high resolution and quality. Bedrock cover in many areas consists of unconsolidated sediments and glacial till. To handle the problems associated with this cover, we present a tomographic method that solves for the 3D velocity structure and receiver static corrections simultaneously. We test the method on first‐arrival picks from deep seismic reflection data acquired in the mid‐ late to 1980s in the Siljan Ring area, central Sweden. To use this data set successfully, one needs to handle a number of problems, including time‐varying, near‐surface velocities from data recorded in winter and summer, several sources and receivers within each inversion cell, varying thickness of the cover layer in each inversion cell, and complex 3D geology. Simultaneous inversion for static corrections and velocity produces a much better image than standard tomography without statics. The velocity model from the simultaneous inversion is superior to the velocity model produced using refraction statics obtained from standard reflection seismic processing prior to inversion. Best results using the simultaneous inversion are obtained when the initial top velocity layer is set to the near‐surface bedrock velocity rather than the velocity of the cover. The resulting static calculations may, in the future, be compared to refraction static corrections in standard reflection seismic processing. The preferred final model shows a good correlation with the mapped geology and the airborne magneticmap.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3