3‐D tomographic static correction

Author:

Chang Xu1,Liu Yike1,Wang Hui1,Li Fuzhong2,Chen Jing3

Affiliation:

1. Chinese Academy of Sciences, Institute of Geology and Geophysics, A11 Datun Road, Chaoyang District, P.O. Box 9701, Beijing 100101, China.

2. Bureau of Geophysical Prospecting, Chinese National Petroleum Company, 65 Fanyang Road, P.O. Box 11, Zhuozhou, Hebei 072751, China.

3. University of Utah, Department of Geology and Geophysics, WBB 717, 135 South 1460 East, Salt Lake City, Utah 84112.

Abstract

A 3‐D tomographic inversion approach based on a surface‐consistent model for static corrections is presented in this paper. Direct, reflected, and refracted waves are used simultaneously to update the near‐surface model. We analyze the characteristics of the first‐break traveltime in complicated low‐velocity layers. To improve the accuracy for the velocity model, the various first‐break times from direct, reflected, and refracted waves are considered for model inversion. A fractal algorithm which overcomes the error caused by wavelet shape differences is applied to pick first breaks. It also overcomes the leg jump of refractions. The method can pick a large number of first breaks automatically. The raypaths and traveltimes are calculated with a 3‐D ray tracer that does not increase computation time for complicated geological models. Our method can determine the raypath associated with minimum traveltimes regardless of wave mode (direct, refracted, or reflected). We use a least‐squares approach in conjunction with a matrix decomposition to reconstruct a 3‐D velocity model from the actual first‐break times obtained from 3‐D data. Finally, long‐ and short‐wavelength static corrections are calculated concurrently, based on the reconstructed velocity profile. The method can be applied to wide‐line profiles, crooked lines, and 2‐D and 3‐D seismic survey geometries. The results applied to a real 3‐D data example indicate that the 3‐D tomographic static corrections are effective for field data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3