A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers

Author:

Hellmann SebastianORCID,Grab MelchiorORCID,Patzer Cedric,Bauder AndreasORCID,Maurer Hansruedi

Abstract

Abstract. Cross-borehole seismic tomography is a powerful tool to investigate the subsurface with a very high spatial resolution. In a set of boreholes, comprehensive three-dimensional investigations at different depths can be conducted to analyse velocity anisotropy effects due to local changes within the medium. Especially in glaciological applications, the drilling of boreholes with hot water is cost-efficient and provides rapid access to the internal structure of the ice. In turn, movements of the subsurface such as the continuous flow of ice masses cause deformations of the boreholes and complicate a precise determination of the source and receiver positions along the borehole trajectories. Here, we present a three-dimensional inversion scheme that considers the deviations of the boreholes as additional model parameters next to the common velocity inversion parameters. Instead of introducing individual parameters for each source and receiver position, we describe the borehole trajectory with two orthogonal polynomials and only invert for the polynomial coefficients. This significantly reduces the number of additional model parameters and leads to much more stable inversion results. In addition, we also discuss whether the inversion of the borehole parameters can be separated from the velocity inversion, which would enhance the flexibility of our inversion scheme. In that case, updates of the borehole trajectories are only performed if this further reduces the overall error in the data sets. We apply this sequential inversion scheme to a synthetic data set and a field data set from a temperate Alpine glacier. With the sequential inversion, the number of artefacts in the velocity model decreases compared to a velocity inversion without borehole adjustments. In combination with a rough approximation of the borehole trajectories, for example, from additional a priori information, heterogeneities in the velocity model can be imaged similarly to an inversion with fully correct borehole coordinates. Furthermore, we discuss the advantages and limitations of our approach in the context of an inherent seismic anisotropy of the medium and extend our algorithm to consider an elliptic velocity anisotropy. With this extended version of the algorithm, we analyse the interference between a seismic anisotropy in the medium and the borehole coordinate adjustment. Our analysis indicates that the borehole inversion interferes with seismic velocity anisotropy. The inversion can compensate for such a velocity anisotropy. Based on the modelling results, we propose considering polynomials up to degree 3. For such a borehole trajectory inversion, third-order polynomials are a good compromise between a good representation of the true borehole trajectories and minimising compensation for velocity anisotropy.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3