Overburden 4D time shifts — Indicating undrained areas and fault transmissibility in the reservoir

Author:

R⊘ste Thomas1,Ke Ganpan1

Affiliation:

1. Statoil ASA.

Abstract

Production-induced geomechanical stress changes cause velocity changes in the overburden that might be detected as 4D seismic time shifts. The strength of the velocity changes depends on the degree of pressure changes and the elastic properties of the reservoir and overburden layers. Even small velocity changes (less than 1%) might accumulate into detectable seismic time shifts at the top reservoir, since the overburden thickness typically ranges from one to several kilometers. Reservoir pressure changes inducing seismic time shifts are observed in the overburden of the Snorre, Heidrun, and Statfjord fields, all located on the Norwegian Continental Shelf. The strong correlation between overburden time shifts, geomechanics, and reservoir pressure changes is used to indicate undrained areas and transmissibility across faults, which is useful information for increased oil recovery, well planning, and reservoir model updating. 4D geomechanical models are built with input from simulated reservoir pressures. Geomechanical strain and velocity changes are linked through a “dilation” factor, R. The Snorre, Heidrun, and Statfjord fields indicate an average R value of about 15 for the overburden, when combining modeled vertical strain with observed seismic time shifts. However, this study also shows strong vertical variation in R, implying that R might be layer dependent. For the Statfjord Field, seabed subsidence measurements from gravity and GPS monitoring are used to calibrate the geomechanical model. The Snorre Field results show that both reservoir pressure depletion and pressure buildup can be identified by the use of overburden time shifts. The properties of the reservoir formations and surrounding layers of the investigated fields are typical for many fields on the Norwegian Continental Shelf. This implies that pressure-induced time shifts might be expected for many producing fields, not only chalk or high-pressure, high-temperature reservoirs but also sandstone reservoirs close to hydrostatic pressure.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3