Deep-unrolling architecture for image-domain least-squares migration

Author:

Zhang Wei1ORCID,Ravasi Matteo2ORCID,Gao Jinghuai3ORCID,Shi Ying4ORCID

Affiliation:

1. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, China.

2. King Abdullah University of Science and Technology, Earth Science and Engineering, Physical Sciences and Engineering, Thuwal, Saudi Arabia.

3. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, China. (corresponding author)

4. Northeast Petroleum University, School of Earth Science, Daqing, China.

Abstract

Deep-image prior (DIP) is a novel approach to solving ill-posed inverse problems whose solution is parameterized with an untrained deep neural network and cascaded with the forward modeling operator. A key component to the success of such a method is represented by the choice of the network architecture, which must act as a natural prior to the inverse problem at hand and provide a strong inductive bias toward the desired solution. Inspired by the close link between neural networks and iterative algorithms in classical optimization, we apply an unrolled version of the gradient descent (GD) algorithm as our DIP network architecture, denoted as the deep-unrolling (DU) architecture. Each layer of the unrolled network is comprised of two parts: the first part corresponds to the GD step of the data-fidelity term, whereas the second part, formed by a six-layer convolutional neural network (CNN), plays the role of a regularizer in the associated objective function. The developed DU architecture is applied to the problem of image-domain least-squares migration (IDLSM) to invert migrated seismic images for their underlying reflectivity and is denoted as DU-IDLSM. As such, the DU architecture parameterizes the reflectivity, and the input of each layer of the unrolled network is the reflectivity at the previous layer. Similar to the classical DIP approach, the parameters of the DU architecture are optimized in an unsupervised fashion by minimizing the data misfit function itself. Through experiments with a part of the Sigsbee2A model and a marine field data set, we test the effectiveness of the DU-IDLSM approach and highlight two key benefits. First, the DU architecture can effectively regularize the inversion process, resulting in reflectivity estimates with fewer artifacts and higher image resolution than those produced by conventional IDLSM approaches. Second, we indicate that by including dropout layers in the CNN architecture, DU-IDLSM can produce a qualitative measure of the uncertainty associated with the least-squares migration process.

Funder

Key Program of the National Natural Science Foundation of China

National Key RD Program of China

Publisher

Society of Exploration Geophysicists

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3