Abstract
Abstract
In this paper we describe an investigation into the application of deep learning methods for low-dose and sparse angle computed tomography using small training datasets. To motivate our work we review some of the existing approaches and obtain quantitative results after training them with different amounts of data. We find that the learned primal-dual method has an outstanding performance in terms of reconstruction quality and data efficiency. However, in general, end-to-end learned methods have two deficiencies: (a) a lack of classical guarantees in inverse problems and (b) the lack of generalization after training with insufficient data. To overcome these problems, we introduce the deep image prior approach in combination with classical regularization and an initial reconstruction. The proposed methods achieve the best results in the low-data regime in three challenging scenarios.
Funder
Deutsche Forschungsgemeinschaft
Subject
Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献