Automatic nonhyperbolic velocity analysis

Author:

Abbad Brahim12,Ursin Bjørn12,Rappin Didier12

Affiliation:

1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway. .

2. Total Exploration & Production, Pau, France. .

Abstract

The stacking of long-offset seismic data requires a nonhyperbolic traveltime function that depends on two-way traveltime, normal moveout (NMO) velocity and effective anellipticity. Based on a standard fractional approximation, a new parameterization in slowness-squared parameters provides optimal sampling of the NMO velocity and anellipticity. The automatic nonhyperbolic velocity analysis is performed with a normalized bootstrapped differential semblance (BDS) coherency estimator that leads to enhanced resolution in velocity spectra compared to differential semblance. Reflection wavelet centering inside time gates results in improved estimates of the two-way time and reduced bias in estimates of the NMO velocity and anellipticity. Generalized Dix equations give estimates of apparent interval thickness, velocity and anellipticity. The interval parameters will fit a homogeneous transversely isotropic medium with a vertical symmetry axis (a VTI medium) or an isotropic layer with a linear velocity gradient. The algorithm is implemented in a two-step strategy. A coarse hyperbolic velocity analysis that identifies events in the gather and estimates a velocity law for applying thetruncation is followed by a dense nonhyperbolic search to infer the physical parameters required for time processing of PP-wave data. The algorithm outputs an automatic stack and later-ally varying moveout velocity and anellipticity maps that can be used for subsequent time processing. Two attribute maps, the BDS map and its derivative, are also computed. These contain the fingerprints of the key reflectors and can be used in structural interpretation. Automatic nonhyperbolic velocity analysis is tested on a synthetic gather and a real data set from the North Sea. Nonhyperbolic parameter search shows an en-hanced estimate of the processing parameters, velocity and anellipticity, and improved quality of the stacked section com-pared with the result from hyperbolic search. The interval moveout velocity maps demonstrate a good match with the reflector positions in the obtained sections and show a great correlation when compared with the results of more advanced processing. The interval anellipticity map is also important for enhanced time processing and resolving the time-depth conversion problem, but the parameter is meaningless when the anisotropy is important or when the aperture is small, mainly for deep reflectors.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3