Simulated annealing velocity analysis: Automating the picking process

Author:

Velis Danilo1ORCID

Affiliation:

1. Universidad Nacional de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, Paseo del Bosque s/n, La Plata B1900FWA 1900, Argentina and CONICET, La Plata, Buenos Aires, Argentina.(corresponding author).

Abstract

We have developed an automated method for velocity picking that allows us to estimate appropriate velocity functions for the normal moveout correction of common-depth-point (CDP) gathers, valid for either hyperbolic or nonhyperbolic trajectories. In the hyperbolic velocity analysis case, the process involves the simultaneous search (picking) of a certain number of time-velocity pairs in which the semblance, or any other coherence measure, is high. In the nonhyperbolic velocity analysis case, a third parameter, usually associated with the layering and/or the anisotropy, is added to the searching process. Our technique relies on a simple but effective search of a piecewise linear curve defined by a certain number of nodes in a 2D or 3D space that follows the semblance maxima. The search is carried out efficiently using a constrained very fast simulated annealing algorithm. The constraints consist of static and dynamic bounding restrictions, which are viewed as a means to incorporate prior information about the picking process. This allows us to avoid those maxima that correspond to multiples, spurious events, and other meaningless events. Results using synthetic and field data indicate that our technique permits automatically obtaining accurate and consistent velocity picks that lead to flattened events, in agreement with the manual picks. As an algorithm, the method is very flexible for accommodating additional constraints (e.g., preselected events) and depends on a limited number of parameters. These parameters are easily tuned according to data requirements, available prior information, and the user’s needs. The computational costs are relatively low, ranging from a fraction of a second to, at most, 1–2 s per CDP gather, using a standard PC with a single processor.

Funder

Universidad Nacional de La Plata

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3