High‐resolution velocity spectra using eigenstructure methods

Author:

Biondi Biondo L.1,Kostov Clement1

Affiliation:

1. Geophysics Department, Stanford University, Stanford, California 94305-2215

Abstract

Stacking spectra provide maximum‐likelihood estimates for the stacking velocity, or for the ray parameter, of well separated reflections in additive white noise. However, the resolution of stacking spectra is limited by the aperture of the array and the frequency of the data. Despite these limitations, parametric spectral estimation methods achieve better resolution than does stacking. To improve resolution, the parametric methods introduce a parsimonious model for the spectrum of the data. In particular, when the data are modeled as the superposition of wavefronts, the properties of the eigenstructure of the data covariance matrix can be used to obtain high‐resolution spectra. The traditional stacking spectra can also be expressed as a function of the data covariance matrix and directly compared to the eigenstructure spectra. The superiority of the latter in separating closely interfering reflections is then apparent from a simple geometric interpretation. Eigenstructure methods were originally developed for use with narrow‐band signals, while seismic reflections are wide‐band and transient in time. Taking advantage of the full bandwidth of seismic data, we average spectra from several frequency bands. We choose each frequency band wide enough, so that we can average over time estimates of the covariance matrix. Thus, we obtain a robust estimate of the covariance matrix from short data sequences. A field‐data example shows that the high‐resolution estimators are particularly attractive for use in the estimation of local spectra in which short arrays are considered. Several realistic synthetic examples of stacking‐velocity spectra illustrate the improved performance of the new methods in comparison with conventional processing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3